When Search and Social Collide

First published March 12, 2009 in Mediapost’s Search Insider

I feel the ground shifting under my feet. And I’m not the only one. John Battelle voiced his perception of shift in a post  this weekend:

Search, and Google in particular, was the first true language of the Web. But I’ve often called it a toddler’s language – intentional, but not fully voiced. This past few weeks folks are noticing an important trend – the share of traffic referred to their sites is shifting. Facebook (and for some, like this site, Twitter) is becoming a primary source of traffic.

Why? Well, two big reasons. One, Facebook has metastasized to a size that rivals Google. And two, Facebook Connect has come into its own. People are sharing what they are reading, where they are going, and what they are doing, and the amplification of all that social intention is spreading across the web.

Talking the Talk

I find Battelle’s analogy of language particularly apt here. I’m a big Steven Pinker fan and am fascinated by the way we process language. It maps well to our use of search.

There are two bursts of language development that correspond to the two biggest periods of brain development. The first, during the first few years of our lives, are when we assimilate the rudimentary rules of our mother tongue. We move from single words to small sentences. We use our new channel of expression to begin to connect with our physical environment, telling others our basic needs (hunger, diaper changes) and asking why things are. At the earliest stages, we explore through language.

The next is during adolescence. Now, we use language to connect with others. We fine-tune empathy, create relationships and probe the fit and fiber of those relationships through words.  We mirror others’ emotions in our own minds, and language is an essential part of that process.

As Battelle says, our use of Google equates to our first explorations of our online world. Our queries are quick and primitive stabs in the dark, hoping to find something of interest. But now, we’re become online adolescents. We’re connecting and conversing, and in that, there is a new and indexable Web or words  that becomes very interesting.

Humans being Human

Online becomes fundamentally important when we use it to do the things that come naturally for us. Seeking information is natural, and search gave us a new and more effective way to do it. Connecting with others is natural, and Facebook and Twitter give us a new way to do that as well.  This isn’t about technology. This is about being human. Technology should be transparent in the process.

But when those fundamental activities leave lingering digital footprints that are quickly converging, there is something staggering in the implications. The ability to create feedback loops between patterns that emerge in the complexity of online, and then use that ability to navigate and connect to places and people, foretells the future of the Web. Twitter and Facebook are not replacements for Google. They are social signals that potentially increase the effectiveness of our online language exponentially.  To quote Battelle again:

The conversation is evolving, from short bursts of declared intent inside a query bar, to ongoing, ambient declaration of social actions.

Consider the implications: Google’s mission to index and organize all the world’s information; the increasing use of personalization to uncover your conscious and subconscious intent; and, the ability to tap into the very vibrations of a vast social network. It will take time to bring it together, but when it does, it will change everything.

Your Brain on Google: Interview with Dr. Teena Moody

This is the full transcript from my interview with Dr. Teena Moody from UCLA’s Semel Institute about the Your Brain on Google Study. Today’s Just Behave column on Search Engine Land has more commentary and analysis of the findings.

Gord:

Why don’t we start with the study where you were comparing activation of the brain using Google versus reading text? What was your original hypothesis going into that study?

Dr. Moody:

Well, we were very interested in two ideas. One was how do the patterns of brain activity differ when you’re doing an internet search versus reading, since computers are such a big part of our lives these days? And then we also wanted to look at different groups of people, people who were internet-savvy and had lots of computer exposure and experience, and compared that to naive subjects – with “naive” we mean people who don’t use computers or the internet very often.

Now there are some difficulties in recruiting for this group because so many people have access to computers these days and that was part of our rationale for choosing an older group of participants here, because you find very few 30-year-olds who don’t have computer experience.

Gord:

So for the purpose of this study, what was the definition of “internet-naive”?

Dr. Moody:

A naive person, we were ideally getting someone who had no internet experience, although they could have computer experience. And it turned out we had a self-rating for them – their frequency of computer use, their frequency of internet use, and then a self-rating of their expertise. And it turns out that the net-naive people use the computer usually once or twice a month, and the internet-savvy people several times a day. In terms of the internet, some of them had never actually been on the internet and some maybe used it once a week or once a month for the naives. Again, the savvy people use the internet multiple times a day.

Gord:

Okay.

Dr. Moody:

So we were able to get a very good spread there between the two groups.

Gord:

So what is an fMRI machine? If I was looking at one, what would I be seeing?

Dr. Moody:

Well, it isn’t the same as an MRI machine. It uses, rather than having ionizing energy, you’re using a magnetic field and radio frequency to generate a pattern, and we can look at what’s called the BOLD signal, and that’s the blood oxygenation level dependent signal in the brain, and it is correlated with brain activity. So we’re interested in an fMRI, which is functional MRI, and looking at a pattern of brain activity. And that’s what we were looking at in this study, differences in the pattern of brain activity between savvy subjects and naive subjects, and comparing that when they’re doing internet searches and doing reading…just to see the pattern of activity… if we see different parts of the brain being activated.

Gord:

Okay. So you’re getting them to do different tasks, you’re getting them to read, you’re getting them to actually do online activities. How were the stimuli presented to them, because in an MRI machine, you’re basically in a tube – right? – and you can’t move your head…

Dr. Moody:

Yes. Keeping your head still is very important in an MRI machine. It’s just like if you moved your camera when you’re taking a photo, it will be blurry. So the participants do have to lie in a tube, essentially – they can’t be claustrophobic – and they wear goggles. It’s very much a virtual reality experience. They wear goggles and they have headphones so that we can speak to them and they can speak to us, we hear each other. And before the actual experiment starts, we usually start with a movie to let them become relaxed in the environment and also they’re aware that they are seeing through the goggles. They watch a movie and we take structural images of their brains so that we have references to overlay their functional activity. So usually there are 5 or 10 minutes of structural images where we’re getting detailed information about the structure of each individual’s brain.

Then after that we follow up with the experiment, and it’s very much like playing a videogame. In this case we had a button box where they could press buttons 1, 2, or 3 to indicate their choices for selecting either a book chapter or an internet site. So rather than having a mouse for this first study – we did not have an MRI-compatible mouse – we used a button box for choice of the selection. But it’s very much a virtual reality experience. It would be like playing a videogame, and I use the analogy of, for the button pressing, changing channels on your TV with your remote control. Most of the participants were very comfortable with the situation.

Gord:

Let’s get on to what you found actually in the study. First, I want to start by asking why did you use reading text as the baseline for neural activity in the study as your comparison point?

Dr. Moody:

Well, actually, both for the reading and for the internet and Google searching, we used a different baseline. We had a button-pressing baseline where white bars appeared on the screen and they just pressed the button when a white bar appeared for the location on the screen. And we compared the pattern of activity when they were reading and making… selecting different chapters or when they were selecting Google, from the Google search screen and reading off the internet to that pattern of activity. So our control was more of a low-level control baseline.

Then, in a higher-level analysis, we compared the pattern of activity while they were reading to the pattern of activity while they were doing the internet search. So both tasks had a lower-level baseline control.

Gord:

Okay. So let’s just cover off what you did find. So when you compared the parts of the brain… And we’ll deal first with the internet-naive. When you compared the parts of the brain activated with text reading versus web searching, what did you find?

Dr. Moody:

Well, we found that the pattern of activity was almost identical, and that really frankly surprised me at first because I thought that the internet even for the naive participants would require additional areas, because when you’re searching the internet you are engaging in decision-making, you have to suppress extraneous information, so there’s inhibition required. So I was surprised to find that it looks like in both the internet task and the reading task the subjects are just engaging their language areas, their visual areas, there’s some sensory integration areas as well, but it looks like they’re reading in both cases. And not surprising at all about the areas recruited, because they’re language areas, memory areas, and visual attention areas.

googlebrains

Gord:

But you found something different when you were looking at the internet-savvy group.

Dr. Moody:

That’s correct. And for the internet-savvy group, their reading areas were virtually identical to the reading areas that were activated for the internet-naive participants, but the very interesting part was the savvy group did recruit additional areas and these were frontal areas that had to do with decision-making, cingulate areas that have to do with conflict resolution. It’s not surprising, it’s what we expected, that these additional areas for decision-making would be required and higher-level cognitive function would be required, and that’s what we found in the internet-savvy group.

Gord:

To explore that a little bit, we’re seeing that people are actually cognitively engaging with the results – they have to make decisions, they’re comparing them. What happens there? With the internet-naive, obviously they weren’t engaging with the content nearly at the same level, but the internet-savvy… Is there a certain level of fluency with search where you elevate it to a higher level and you’re using that input to make decisions?

Dr Moody:

Yes, that is certainly one interpretation, and one interpretation that we have for the data – that it does require additional areas and as you practice it, you do become more fluent and more expert at it.

Now there are two different schools of thought on this. One is that when you first learn a task, you require greater activity and more attention, and that one could expect higher levels of activity if you were new at something. People with expertise can actually show decreases in their functional MRI pattern of activity. But what it seems here is that while engaging in internet searching, you are still very actively engaging these decision-making areas and it might be that the naive people are overwhelmed by the situation and are just treating it like a book – you’re still not trying to integrate the information, they’re reading it as though they were reading a book.

There’s one other interpretation as well, and that is that internet-naive people just have a different pattern of wiring in their brains from those who are internet-savvy – people who prefer using the internet and enjoy that mode of reading are wired differently from the internet-naive people. And we can’t distinguish that in this study, but that is also a possibility.

Gord:

Which is interesting. You say they’re wired differently. Would that be the typical, neural  “fire together, wire together” wiring that happens when we learn anything, or is this something more fundamental in the pruning that happens during the formative years?

Dr. Moody:

Well, certainly in development, you know, we have good evidence that things do wire differently depending upon environmental influences, and definitely there’s evidence now against the old theory that adult’s brains don’t change, but definitely after brain injury there’s been evidence of re-wiring or re-mapping brain regions to overcome deficits. We don’t know what’s happening here. This is a very preliminary study, but one interpretation could be that there was a re-wiring, as people practice on the internet that these areas become more active. But all we can really say is that the pattern of activity is different.

Gord:

So one of the things I’ve suspected, when we’ve looked at behaviours in interacting with search, is as you become more used to using search, more comfortable with the interface, you don’t have to worry so much about navigating through the interface, that becomes more like a conditioned, habitual behaviour. Which means your prefrontal cortex is free to kick in to do those cognitive assessments, to say, “Okay, here’s what Option A offers me versus Option B,” so it’s almost kicking it up to a higher level of processing. Does that seem to make sense? It’s like I said, Google has become a habit and at some point the basal ganglia takes over and runs it as a habit which frees up the prefrontal cortex to do more heavy lifting.

Dr Moody:

Well, our data’s definitely consistent with that interpretation, and I think that that’s what part of our interest is, is how can we enrich our lives as we age, how can we improve our cognitive function or slow cognitive decline? And so yes, that’s an interpretation we would like to have because we would like to say, “Oh, we can do something to make our brains better as we age,” so that’s very exciting and interesting, and it is consistent, however we can’t conclude that. We don’t have any causality here at all.

Gord:

One of the really interesting questions, in reading the maps that came out of the study and looking at the areas that seemed to be lighting up, it looked like as memories were being retrieved or concepts were being retrieved, different cortical areas were being activated. Are you seeing that as people are reading text, there’s corresponding visual activation or auditory activation from those cortical areas that are mentally building the images that correspond to what they’re reading in the search results?

Teena:

Well, we definitely see a huge amount of occipital and visual area activation, and that’s just as we expect because for reading and for the internet you’re looking at visual input. And so that was not unexpected at all, that’s exactly what we would expect.

We don’t have… With fMRI, you don’t have very good temporal resolution, so we can’t… And this was a block study as opposed an event-related study, so we can’t really get into what’s happening second to second in the brain here because we average across these big blocks of 20 to 30 seconds. So we can’t say much about the time course and of what’s happening during the reading and internet searching. I’m sure future studies could do that. So we have good information about what happened in these comparisons, but not in the time domain.

Gord:

But there was a note in the study saying that although the visual stimuli were identical, with internet searching there seemed to be enhanced activity in the visual cortex area. Any ideas what might have caused that?

Dr. Moody:

Well, I think the most parsimonious explanation is that they were attending to it more.

Gord:

Right.

Dr. Moody:

So we’ll probably have to go along with that. But it could be that different areas were recruited and additionally were required, but certainly other studies have shown with attention you do recruit these additional areas.

Gord:

Now one of the things that we’ve seen is when people are looking… And it’s hard because in looking at your study, the layout of the results wasn’t a typical Google result, it was kind of pared down and I think there were only three results shown, right?

Dr. Moody:

Yes. I did some pilot testing and I really had to slim it down for a couple of reasons. One is I just looked into the literature to see how many words a person in a certain age group could read in 30 seconds, so I did have to reduce the amount of information on the screen for that reason. Also, presentation of the information in the goggles in the scanner, we wanted to make sure that everyone could actually read the words on the screen. So when you’re looking in the goggles and you’re looking essentially at something… a very, very small computer screen, we had to limit the number of words. So I did pare down what, you know, would normally be on an internet site. Also, in an early pilot version, I included pop-ups like you would get when you’re actually searching the internet, and that was so distracting for people we, you know, immediately took out the pop-ups. The pop-ups were way too distracting for us to be able to make a legitimate comparison of information presentation, comparing a book format versus the internet format.

Gord:

One of the things that might be interesting, when we’ve seen people scanning search results through eye tracking, it’s very obvious when we look at the saccades and the eye movement that they’re scanning, they’re not reading, and we suspect more of a pattern-matching activity. And that would be interesting to see if they’re scanning it visually to look for matches with the query they just used as opposed to actually reading text and engaging those language centres and the translation of that?

Dr Moody:

Yes, but eye tracking would be a great addition to this type of a study. And also once… You know, now there are MRI-compatible mice so that one could actually do more of a click-around within the internet page itself rather than just making a selection of which site to go to. Those would be great additions for the future.

Gord:

I think what I want to talk about a little bit now.. I think this is going a little beyond the scope of this study, but it ties in with some of Dr. Small’s work. I think you’ve worked with him on some of these ideas of the digital native and the digital immigrant. Moving beyond the group you recruited and looking at the young who have been exposed to technology during those formative neural pruning years and what the differences in brain activity might be. What happens when you’re young and you’re exposed to technology at an early age, as opposed to someone like myself who’s 47? The technology I grew up with was basically two channels of television.

Dr. Moody:

Well, I can only comment on this just from personal experience with my children. I haven’t done research on how children interact with the internet. I’ve read some of the papers but I’ve not done any research on that. But it does seem that, you know, they interact more readily and more fluidly. It’s amazing how quickly your kids can navigate across something on the internet compared to how I do. Of course, I’m pretty computer-savvy, I use the computer hours a day. So I think there is a difference between young people and old people.

Recruiting for this study, there were some people… finding people who were internet-naive, we could find them but they really had no interest in learning how to use the computer either. You know, it was very difficult to find naive people who really wanted a chance to participate in a study about the internet. So young people, I think they’ve grown up with it, they accept, you know, MP3 players, cell phones, visual impact touch screens – all that is so natural to them and some of us are still trying to figure out how to program our DVD players.

Gord:

Right. But I guess there’s speculation too that as they become more comfortable with technology and it becomes more of a natural extension of how they communicate, there’s potentially a trade-off there. I mean, the whole concept of pruning is that you get better at what you do all the time and you gradually lose capabilities in the things you don’t do very often. And so might this mean, for instance, that the young are losing the ability for face-to-face communication or more kind of focussed reasoning over a longer period of time.

Dr Moody:

You know, I think that’s a very real concern, and I know that people are looking at some of those issues, attention in particular. The studies that I’ve actually looked at have used computer gaming to enhance visual attention. So we know that you can actually enhance attention using internet gaming practice. But it might be, as you say, that you also have a negative impact for longer periods of attention, like being able to read an entire article versus clicking around and having this immediate visual gratification of changing very quickly. So I’m not aware of the studies that have looked at the negative impact on attention. I’ve actually been looking more on the positive end of how attention has been enhanced and how people are developing computer packages to help children with ADD for instance be able to focus for longer periods of time. But certainly, just it seems that young people have shorter attention spans. I’m not aware of the research, however.

Gord:

So let’s step back within the scope of the study that we were talking about. I’ve got a couple more questions. One is we’ve also seen fairly significant differences in men versus women when they’re doing information foraging basically, when they’re going out and looking for information. Did you notice any differences in this study?

Dr Moody:

You know, unfortunately we had fewer males in this study. Every study you have limitations in terms of funding and timeframe, etc. And so we did try to recruit more males. Some of the males were the ones unfortunately that had head motion during the scan and we weren’t able to keep them in the final results. So we didn’t have enough male participants to make any kind of comparison male-female. And anecdotally, I can’t really say anything different about the two groups.

Gord:

All right. There was actually a post I ran into after I did a preliminary article on this by a cognitive psychologist by the name of Bill Ives and the point he made in this study was that because we saw that as you become more comfortable or learn tasks that you activate more parts of the brain, he said really what the study shows is that once you know what you’re doing, it increases brain function, you generally engage with the content at a greater level. You’re doing this research to find ways to possibly improve cognitive function. What is it that’s most exciting about internet activity as opposed to learning to do any kind of other complex puzzle-solving or mental activity?

Dr. Moody:

Well, I think that because we have a situation where almost everyone has access to a computer, it can make this almost universal. Especially as we age, we’re not getting out there as much to walk around and some people don’t have the ability to go to senior centres and interact with other people, but that you could do something in your own home without requiring great mobility is very exciting. Also, there would be so much choice, there’s so much variety on the internet, it can be individually tailored to your personal preferences. So in this study I tried to pick topics that might be interesting to older adults – you know, walking for exercise, Tai Chi, health aspects of eating different types of food. I think that if it’s enjoyable for someone and if you don’t consider it to be a job to get out there and stimulate your brain, that people will do it more frequently. So that’s part of what’s exciting about it, is that it should be easily accessible to people once they know how to turn on the computer and activate the internet.

Gord:

Okay. So this is an easier path potentially to mental exercise?

Dr. Moody:

I think that it can be, yes.

Gord:

For the purpose of this interview, I’ll wrap up by asking you what’s next? What are the questions you’d like to explore further?

Dr. Moody:

Well, we would like to see what the impact of internet training might be on people who have no internet experience or very little internet experience. So that’s our next direct path. We’d also like to look at interventions for specific groups. If people have memory issues, is there something we could do to improve that? I think Dr. Small, Dr. Brookheimer, and myself are very interested in improving memory and improving people’s lives as we age, so that part of it would be a great bonus if we can discover techniques that might improve memory or enhance cognitive function. So the next step will be to look at training, and then we could look at patient groups, and I personally have interest in developmental learning too and we’ll probably look in young people as well.

Gord:

Okay. Well, fascinating topics to explore. Thank you, Teena, so much for the interview. It was fascinating to walk through it with you.

Search a Real Downer

The latest numbers from comScore show how the mood of the nation has shifted, and how it’s being reflected in what we search for. This is a topic I’ve talked about numerous times, so rather than spout it all again, I’ll just provide a few links to past posts. But I think one of the tables from the comScore release paints a pretty sobering picture:

Growth in Search Terms Related to Economic Downturn
December 2008 vs. December 2007
Total U.S. – Home/Work/University Locations
Source: comScore Marketer
Search Term 
Total Searches (000)
Dec-2007
Dec-2008
% Change
“Coupons”
7,637
19,921
161%
“Unemployment”
2,688
8,214
206%
“Discount”
6,271
7,928
26%
“Mortgage”
4,518
7,756
72%
“Bankruptcy”
1,012
2,589
156%
“Foreclosure”
824
1,373
67%
“Unemployment Benefits”
215
748
247%
“Online behavior has come to reflect the interests or concerns of Americans, and we are certainly seeing this manifest itself with respect to the economic downturn,” said comScore chairman Gian Fulgoni. “Search volume using terms relating to the economy has ballooned over the past year as Americans have become increasingly concerned over their economic wellbeing.”
Gian and I talked about this almost a year ago at the Search Insider Summit in Florida. That lead to a column in Search Engine Land talking about how whatever is top of mind for us translates into search activity – Battelle’s Database of Intentions. Ironically, this same tendency is one of the reasons why I think Search will do particularly well in the current economic meltdown – the subject of another Just Behave column.

Hyperlinking Reality

First published January 29, 2009 in Mediapost’s Search Insider

Fellow Search Insider David Berkowitz (David, it’s been too long since we riffed on each other’s columns!) allowed his curiosity to wander down some fascinating potential directions search may evolve in a couple of recent columns, first looking at Ford’s plans for integrating GPS-enabled voice search  in all its  vehicles, and then speculating how one search could be launched in 17 different ways, both today and in the future. One of his speculations is what I wanted to explore further today:

“Instead of entering a query, Penny may be able to put on a special set of glasses and scan her surroundings for store names and reviews. The headsets and eyewear from Vuzix now link up to other portable devices such as iPods and camcorders, but they keep including more functionality within the gadgets themselves.”

Picture This…

Sound far-fetched? Not according to the MOBVIS (Mobile Attentive Interfaces in Urban Scenarios)  project in Europe. In a nutshell, the MOBVIS technology allows you to take a picture of your surroundings with your camera-equipped mobile device, then MOBVIS recognizes aspects of your environment and places hyperlinks on the items where it has relevant information. So, if you take a picture of a bus stop, MOBVIS can retrieve what buses stop there and what the schedule is. Assuming city buses are equipped with GPS and telemetric units, it could also tell you how long you have to wait for the next bus.

Currently, the MOBVIS project is visually mapping and testing in three European cities; Graz, Austria; Ljubljana, Slovenia; and Darmstadt, Germany). Geo-referenced imagery tied to streetscapes from these three centers is online and available to the scientific community. One has to imagine that Google would be paying particular attention to this, as it’s a natural tie-in with its Street View project.

Say Cheese and Search…

So, let’s imagine what MOBVIS could do. First of all, it could be an incredible interactive guide, bringing mountains of information about your surroundings to just one click away on your mobile device. Dining reviews, items on sale in local stores, entertainment schedules and reviews, transit schedules, self-guided tours, could all live on the other side of the MOBVIS linking icon. Now, all that is theoretically available through GPS positioning, but in urban pedestrian applications, GPS has some functional limitations. It’s difficult to get an accurate enough fix to narrow your location to even a half block radius, especially in the downtown “urban valley” core. MOBVIS allows you to restrict your information quest to exactly what you want to include in your viewfinder, making it a much more specific query tool. Also, MOBVIS could be tremendously useful for the visually impaired, allowing them to scan their surroundings and retrieve information.

Making Reality More Useful

What MOBVIS does, along with all the other search permutations mentioned by David, is point the way of search’s future. I’ve always said that search is not about the destination, whether it’s Google, Yahoo or Live. It’s about the functional engine that sits behind the portal. It’s about the ability to link people with relevant information and, more importantly, timely functionality. Search is about letting people do what they have to do. MOBVIS is just one more way to establish the link. It’s a pretty amazing way that opens up some intriguing possibilities, but what makes MOBVIS exciting is its potential for helping us navigate our current reality. David’s 17 ways to search, Aaron Goldman’s past speculations about ambient findability, and my ongoing exploration of search as an expression of us reaching for our goals all share a common theme: search enhances our ability to do things.

In a recent post, Silicon Valley writer Sarah Lacy speculated that Google might be nearing the end of its reign as online’s Golden Child. She used some dubious logic about usage and traffic to posit that the mantle is ready to be passed to Twitter or Facebook. What she missed is the central premise of Google’s mission. It’s not about driving traffic to Google.com. It’s about connecting us with what we’re looking for. What Google has been doing through Google Maps, Street View, Universal Search, personalization, Google Mobile and yes, even the lowly but ubiquitous Google Toolbar, is weaving together the functionality needed to deliver on that mission. It remains to be seen whether Google will be successful in doing so, but it’s certainly well in the lead. And that’s the power of Google’s potential. It’s about providing the infrastructure to connect all the dots, both online and in the real world. It’s not about being one of the dots.

Your Brain on Google Update

I had a chance to read through the fMRI study from UCLA, Your Brain on Google, on a plane ride down to visit with..you guessed it..Google. Pretty interesting stuff…here are a few quick highlights:

  • In the Internet Naive group..there was little difference in brain activity between searching on Google and reading text. The reason, I suspect, was that the group was just reading the search results.
  • But in the Internet Savvy group..a totally different story. Suddenly, many more parts of the brain started lighting up, including the parts governing decision making and the visual cortex. What this shows is that these users were using the results to help make decisions. They were fluent in search.
  • One other interesting note. The increased activation in the visual cortex may indicate that searchers see the information differently. The information presented was exactly the same, with the same stimuli, but in the search savvy group, when they were scanning the visual stimuli as search results, they seemed to be more visually rich. I suspect that as we get more savvy with results, we scan more and read less, treating the results more like a picture.

Just a few tidbits for now. I’m setting up an interview with researcher Teena Moody to dive deeper, which will probably become a Just Behave column. Also, don’t be surprised if it’s what I talk about at SMX West in Santa Clara.

Got the UCLA Googlized Brain Study!

Thanks to UCLA, I just got a copy of the UCLA fMRI study of what happens to people’s brains when they use Google. This is fascinating..well..it is if you live in my skull.

The study was done by Dr. Gary Small, Dr. Susan Bookheimer and Dr. Teena Moody. Just got it so I haven’t had a chance to read through it, but I’m looking forward to it. As chance would have it, I just finished Gary Small’s book – iBrain – last night. The most interesting part of the book was references to several fMRI studies done around the world, showing what parts of the brain fire in given situations and while we’re undertaking different tasks. When it comes to searching, I have my own theories..which I talked about here and in my Search Insider Column. I’d like to see if the UCLA results match up.

Small’s discussion of Digital Natives vs Digital Immigrants is really interesting as well, and something I want to take a much deeper dive on in future posts and articles. Briefly, natives grew up with technology, so their brain basically molded itself with hard wired capabilities, while immigrants learned their tech skills after the brain had largely formed itself. Think of the difference between growing up with a language and learning it as an adult. Digital natives are fluent in technology..for the rest of us, it will never be our native tongue. Small does make one serious transgression in the discussion which drove me nuts. He keeps swapping out neuroplasticity for the word “evolution”, giving the impression (which he never bothers to clear up) that genetic evolution can happen in one generation. It just doesn’t work that way.

That said, it’s pretty fascinating research and a question that seems to be of interest to many. I did a Search Engine Land article on it called “Are Our Brains Becoming Googlized” which picked up a healthy number of Diggs and became one of Search Engine Land’s most read articles. I’m trying to land an interview with one of the researchers. If successful, I’ll let you know how to access.

I’m very happy in my own nerdy little neuro-world!

David vs. Goliath Brands on the Search Results Page

First published December 4, 2008 in Mediapost’s Search Insider

Last week, I talked about branding on the search page, effectively intercepting the user during consideration. Certainly if you’re a household brand name, you have to be at or near the top of searches for your product category if you want to defend your position in the prospect’s consideration scent. But what if you’re a new entry into the market or a relatively unknown brand. Can you still effectively play in the category? Yes, but you have to be smarter than your behemoth competitors. Fortunately, in most cases, that’s not too hard to do when it comes to search.

The Strategy: Play Broad, but Think Niche

First, it’s important to know the common behaviors of the searcher. We start at the top left and scan the results in the “Golden Triangle” first. Only after this will we look at the ads on the right. We look for relevance, based not just on the query we used, but the implicit labels we carry in our mind. We will start with the simplest query that we feel will yield acceptable results with the least amount of investment. And, we will click through on two or three results to compare the information scent on the landing pages. So, given this behavioral pattern, what can you do to catch the attention of prospects with broad generic queries?

First of all, you have to target your messaging with exquisite precision in the title of your ad. This is no mean feat, because the limit is 25 characters, including spaces. Each one of these characters is precious, because this is the part of your ad that will get read. At best, you’ll get spot scanning of your description (bonus hint, move your most important “hot button” words in your description so they’re in the line right under the title and near the front. And don’t be afraid to put prices in. They’re a disruption in the text-based pattern and so stand out to the eye).

Rule of thumb, start with the query (hit bolding of the query is an important relevancy cue) and then laser focus on the primary hot button for your niche target. Don’t be afraid to identify the target. If you’re on a broad category, but your target is B2B buyers, say so. If the differentiator is benefit, move it into the title. One example, laptops that are durable enough to stand the rigors of road warrior treatment: The query you’re bidding for could be “laptops,” but your title should be: “Rugged Laptops.” Because your brand is unknown to the prospect, don’t worry about putting it in the title.

Pick Your Spot

Secondly, in a broad category, you want to avoid unqualified clicks. So you’re going to have to move down the right rail, preferably targeting the #4 or #5 spot. Eye-tracking studies show that this spot gets decent visibility (because of how we move over to the right rail when we reach the bottom of the golden triangle) relative to the rest of the ads, yet doesn’t pull a lot of unqualified clicking. This position, together with your targeted message, stands a decent chance of catching the prospect’s eye without capturing ROI-deflating gratuitous clicking. The challenge will be fighting the tendency of Google’s quality score to push you off the first page of results.

Plan Your Tactics in Context

All too often in search, we plan our messaging without paying attention to the user context that leads to engagement. Your ad will be appearing together with a number of other ads and organic results on a search page. Users will be scanning through those ads and making their choice based on not just what your ad says, but what all the others do as well. Additionally, there will be at least a few clicks through to competitive landing pages. You’re going to have to plan your messaging relative to what your competition is doing. Do a query yourself and see what the landscape looks like, through the eyes of your prospect. What other choices are available? How effective is the landing page experience, again, with your prospect’s potential intent firmly in mind? If you adopt this mindset, you’ll be amazed at how the biggest brands in the business (any business, yours included) routinely fumble the ball when it comes to delivering what the prospect is looking for on the search page. Unfortunately, non-targeted messaging and irrelevant landing page experiences seem to be the rule rather than the exception. There’s plenty of room for smart search marketers on the average results page.

Measure, Test, Optimize and Repeat

If you’re playing in the high traffic but generic keyword space, devote a lot of time to testing and tweaking. Find optimum positions and wording. Carefully watch your ROAS metrics. Capture the micro-conversions. Be smarter than the competition and you’ll find that search page where you can pull off a victory, even when you’re faced with David vs. Goliath odds.

Digging Googlized Brains: Front Page Stuff!

In my Just Behave column last week, I looked at the recent UCLA fMRI study on brain activity during online searching. I also looped this back to Nicholas Carr’s article from the summer, Is Google Making Us Stupid? and a few of my other posts on how cognition plays out when we search and potential neural remapping. All pretty geeky stuff right?

Well, it seems that putting the words “Google” and “brain” in the same title hit a nerve with readers. Somehow I made the front page of Digg (my first time) and Danny Sullivan fired me an email saying the story had 18,000 views in one day, making it one of the most read Search Engine Land articles ever. I know I find this stuff fascinating, but it’s good to know others do as well. Here was one of the Digg comments:

First off, this is the most interesting article I’ve seen on the front page of Digg in a good while. It doesn’t say that Jesus doesn’t exist nor does it compare Jesus to Obama. It’s about a revolutionary scientific study and it made it to the front page of Digg. WOW!

The column seems to have found it’s way onto a ton of blogs, but just in case you didn’t see it in any of your other feeds, thought I’d do a quick post. Feel free to continue to Digg it. I have to admit, now that I made the front page once..it’s getting a little addictive!

Branding, The Mind and Search

I’ve been spending a lot of time lately exploring the area of branding on the search page. This was one of the columns that started it all.  Check out the comments on the original. – G.

In my last column, I opened up the search “branding” can of worms regarding unclicked search ads and generated a fascinating discussion with Gian Fulgoni and James Lamberti from comScore, as well as Aaron Goldman from Resolution Media, who has unpublished research that sheds new light on the subject and counters my argument. I think it’s fair to say that the value of an unclicked search ad still needs further research to resolve the question.

If it proves that there is brand lift created, then the question of pricing models currently used comes back into play. As Lamberti mentioned, perhaps the problem is not the pricing model but the measurement methods. And, as Jonathon Mendez from Ramp Digital added, “Is Google leaving lots of money on the table? They’re the most insanely profitable company of our time — I think they know what they’re doing.”

How Much Value is There in Search?

Could it be that we’re all right? Could it be that there’s so much value in the search interaction that Google can be leaving money on the table and still be insanely profitable? I do believe that in the case of branding impact, there is a distinct difference in the nature of the impact of the search ad from almost any other form of advertising, which is the topic of this column.

As I said a few columns back, search is more than a channel. It’s a fundamental human activity, and the same things that may be working against search in an implicit engagement way are very much working for search in an explicit way. The nature of our engagement with search is much different from other advertising.

Daring to Define Engagement

The Advertising Research Foundation has been struggling with defining engagement as a cross-channel effectiveness metric for years now, without making much headway. The problem is that engagement with a TV ad is a totally different proposition than engagement with a search ad.

Let’s look first at TV. In the 1980’s, the ARF conducted a major research study called the Copy Research Validation Project (as referenced in “The Advertised Mind,” by Erik Du Plessis). The purpose of the study was to isolate the factors that were common in successful ads. What was the one factor most predictive of success, which was actually thrown in as an after-thought? Whether people liked the ad.

Before most ads can work, they have to get our attention. And we pay more attention to things we like. This led to a hyper-creative explosion in the advertising biz, as agencies churned out ads designed first and foremost to make us like them. Unfortunately, most ads forgot that once you get someone’s attention, you also have to sell something. And that can be a difficult balance to maintain. Our cues to switch selective perception to something that captures our attention and our natural defenses against unsolicited persuasion usually work counter to each other. And it’s in that dynamic abyss that 250 billion dollars of advertising — in the U.S alone — gets poured every year,.

Search: Likability is Not a Prerequisite

But search is different. You don’t need to like a search ad, because it doesn’t have to capture your attention. You’ve already volunteered that attention. Search is used to gather information about an upcoming purchase. You’re fully engaged. You’re focusing on it. There are no cognitive guards on duty, protecting you from unscrupulous persuasion.

There’s another difference. Other advertising interrupts you when you have no intention of considering purchasing the featured product or service. Search reaches you just at the time you’re most fully engaged in consideration. And there lies the tremendous value of search, as it opens the door to the most engaging interaction with a brand that there can be: the online visit.

The Most Effective Engagement Point

Once consumers have knocked on your door through search, you have a tremendous opportunity to engage them. They have expressed interest, they are actively and fully engaged, they’re looking for information and they are ready to be persuaded. In the universe of consumer motivation, all the planets are perfectly aligned. You simply cannot find a better touch point with a consumer than this.

But the key is, you have to let consumers drive that interaction. They may simply be looking for rational purchase validation information, they may be researching alternatives, or they may be looking to be emotionally persuaded. A Web site can do any and all of the above, but it has to be at the visitor’s imperative.

Do I think there’s tremendous brand value left on the table with search? Absolutely. And as James Lamberti from comScore said, uncovering that value lies first in better measurement. If we can prove the value, whether it’s implicit or explicit, that may indeed lead to a different pricing model. Let’s face it; we’re a long way from understanding online consumer behavior. As we gain more understanding, expect changes. Expect lots of them.

A Cognitive Walk Through of Searching

First published October 23, 2008 in Mediapost’s Search Insider

Two weeks ago, I talked about the concept of selective perception, how subconsciously we pick and choose what we pay attention to. Then, last week, I explained how engagement with search is significantly different than engagement with other types of advertising. These two concepts set the stage for what I want to do today. In this column, I want to lay out a step-by-step hypothetical walk-through of our cognitive engagement with a search page.

Searching on Auto Pilot

First, I think it’s important to clear up a common misunderstanding. We don’t think our way through an entire search interaction. The brain only kicks into cognitive high gear (involving the cortex) when it absolutely needs to. When we’re engaged in a mental task, any mental task, our brain is constantly looking for cognitive shortcuts to lessen the workload required. Most of these shortcuts involve limbic structures at the sub-cortical level, including the basal ganglia, hippocampus, thalamus and nucleus accumbens. This is a good thing, as these structures have been honed through successful generations to simplify even the most complicated tasks. They’re the reason driving is much easier for you now than it was the first time you climbed behind the wheel. These structures and their efficiencies also play a vital role in our engagement with search.

So, to begin with, our mind identifies a need for information. Usually, this is a sub task that is part of a bigger goal. The goal is established in the prefrontal cortex and the neural train starts rolling toward it. We realize there’s a piece of information missing that prevents us from getting closer to our goal – and, based on our past successful experiences, we determine that a search engine offers the shortest route to gain the information. This is the first of our processing efficiencies. We don’t deliberate long hours about the best place to turn. We make a quick, heuristic decision based on what’s worked in the past. The majority of this process is handled at the sub-cortical level.

The Google Habit

Now we have the second subconscious decision. Although we have several options available for searching, the vast majority of us will turn to Google, because we’ve developed a Google habit. Why spend precious cognitive resources considering our options when Google has generally proved successful in the past? Our cortex has barely begun to warm up at this point. The journey thus far has been on autopilot.

The prefrontal cortex, home of our working memory, first sparked to life with the realization of the goal and the identification of the sub task, locating the missing piece of information. Now, the cortical mind is engaged once again as we translate that sub task into an appropriate query. This involves matching the concept in our minds with the right linguistic label. Again, we’re not going to spend a lot of cognitive effort on this, which is why query construction tends to start simply and become longer and more complex only if required. In this process, the label, the query we plugged into the search box, remains embedded in working memory.

Conditioned Scanning

At this point, the prefrontal cortex begins to idle down again. The next exercise is handled by the brain as a simple matching game. We have the label, or query, in our mind. We scan the page in the path we’ve been conditioned to believe will lead to the best results: starting in the upper left, and then moving down the page in an F-shaped scan pattern. All we want to do is find a match between the query in our prefrontal cortex and the results on the page.

Here the brain also conserves cognitive processing energy by breaking the page into chunks of three or four results. This is due to the channel capacity of our working memory and how many discrete chunks of information we can process in our prefrontal cortex at a time. We scan the results looking first for the query, usually in the title of the results. And it’s here where I believe a very important cognitive switch is thrown.

The “Pop Out” Effect

When we structure the query, we type it into a box. In the process, we remember the actual shape of the phrase. When we first scan results, we’re not reading words, we’re matching shapes. In cognitive psychology, this is called the “pop out” effect. We can recognize shapes much faster than we can read words. The shapes of our query literally “pop out” from the page as a first step toward matching relevance. The effect is enhanced by query (or hit) bolding. This matching game is done at the sub-cortical level.

If the match is positive (shape = query), then our eye lingers long enough to start picking up the detail around the word. We’ve seen in multiple eye tracking studies that foveal focus (the center of the field of vision) tends to hit the query in the title, but peripheral vision begins to pick up words surrounding the title. In our original eye tracking study, we called this semantic mapping. In Peter Pirolli’s book, “Information Foraging,” he referred to this activity as spreading activation. It’s after the “pop out” match that the prefrontal cortex again kicks into gear. As additional words are picked up, they are used to reinforce the original scent cue. Additional words from the result pull concepts into the prefrontal cortex (recognized URL, feature, supporting information, price, brand), which tend to engage different cortical regions as long-term memory labels are paged and brought back into the working memory. If enough matches with the original mental construct of the information sought are registered, the link is clicked.

Next week, we’ll look at the nature of this memory recall, including the elusive brand message.